
doi: 10.1051/0004-6361/201220189 , 10.25916/sut.26285692 , 10.25916/sut.26285692.v1 , 10.48550/arxiv.1208.1506
arXiv: 1208.1506
handle: 1959.3/371337
doi: 10.1051/0004-6361/201220189 , 10.25916/sut.26285692 , 10.25916/sut.26285692.v1 , 10.48550/arxiv.1208.1506
arXiv: 1208.1506
handle: 1959.3/371337
In the first paper of this series, we present a new approach for studying the chemo-dynamical evolution in disk galaxies, which consists of fusing disk chemical evolution models with compatible numerical simulations of galactic disks. This method avoids known star formation and chemical enrichment problems encountered in simulations. Here we focus on the Milky Way, by using a detailed thin-disk chemical evolution model (matching local observables, which are weakly affected by radial migration) and a simulation in the cosmological context, with dynamical properties close to those of our Galaxy. We examine in detail the interplay between in situ chemical enrichment and radial migration and their impact on key observables in the solar neighborhood, e. g., the age-metallicity-velocity relation, the metallicity distribution, and gradients in the radial and vertical directions. We show that, due to radial migration from mergers at high redshift and the central bar at later times, a sizable fraction of old metal-poor high-[alpha/Fe] stars can reach the solar vicinity. This naturally accounts for a number of recent observations related to both the thin and thick disks, despite the fact that we use thin-disk chemistry only. Although significant radial mixing is present, the slope in the age-metallicity relation is only weakly affected, with a scatter compatible with recent observational work. While we find a smooth density distribution in the [O/Fe]-[Fe/H] plane, we can recover the observed discontinuity by selecting particles according to kinematic criteria used in high-resolution samples to define the thin and thick disks. We outline a new method for estimating the birth place of the Sun and predict that the most likely radius lies in the range 4.4 < r < 7.7 kpc (for a current location at r = 8 kpc). A new, unifying model for the Milky Way thick disk is offered, where both mergers and radial migration play a role at different stages of the disk evolution. We show that in the absence of early-on massive mergers the vertical velocity dispersion of the oldest stars is underestimated by a factor of similar to 2 compared with observations. We can, therefore, argue that the Milky Way thick disk is unlikely to have been formed through a quiescent disk evolution. An observational test involving both chemical and kinematic information must be devised to ascertain this possibility.
Cosmology and Nongalactic Astrophysics (astro-ph.CO), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, 520, Astrophysics - Cosmology and Nongalactic Astrophysics
Cosmology and Nongalactic Astrophysics (astro-ph.CO), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies, 520, Astrophysics - Cosmology and Nongalactic Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 392 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
