Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Smart Gridarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Smart Grid
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Smart Grid
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Virtual‐physical power flow method for cyber‐physical power system contingency and vulnerability assessment

Authors: Qiu, D.; Zhang, R.; Zhou, Z.; Zhang, J.; Zhang, X.;

Virtual‐physical power flow method for cyber‐physical power system contingency and vulnerability assessment

Abstract

Abstract Traditional power systems have evolved into cyber‐physical power systems (CPPS) with the integration of information and communication technologies. CPPS can be considered as a typical hierarchical control system that can be divided into two parts: the power grid and the communication network. CPPS will face new vulnerabilities which can have network contingencies and cascading consequences. To address this challenge, a virtual‐physical power flow (VPPF) method is proposed for the vulnerability assessment of CPPS. The proposed method contains dual power flows, one is to simulate a virtual power flow from decision‐making units, and the other is to simulate a physical power flow. In addition, a novel hierarchical control model is proposed that includes four layers of CPPS: the physical layer, the secondary device layer, the regional control layer, and the national control layer. The model is based on IEEE test cases using data and structures provided by MATPOWER. Denial‐of‐service (DoS) and false data injection (FDI) are simulated as two major cyber‐attacks in CPPS. A novel vulnerability index is proposed that consists of system voltage, network latency, and node betweenness as three key indicators. This is a comprehensive and adaptive index because it encompasses both cyber and physical system characteristics and can be applied to several types of cyber‐attacks. The results of the vulnerability assessment are compared in national and regional control structures of CPPS to evaluate the vulnerability of cyber‐physical nodes.

Keywords

power system security, power system cyber‐security and privacy, power system cyber-security and privacy, Electrical engineering. Electronics. Nuclear engineering, cyber-physical systems, power grid, cyber‐physical systems, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold