
doi: 10.1049/sbew534e_ch4
This chapter describes patch design cases for different applications. The use of microstrip patch antennas in wireless communication systems provides several advantages like low profile, low cost, and ease of fabrication. Moreover, microstrip patch antennas can provide a possible solution for fifth generation (5G) antenna design. Different antenna shapes can be fabricated using the rectangular patch as an initial step. This type of antenna design requires the simultaneous optimization of several different geometrical parameters. An optimization algorithm or techniques is a suitable approach for solving this problem. In the literature, there are several examples of patch antenna design and optimization using different evolutionary algorithms (BAs) [1-5]. These approaches include genetic algorithms [6], particle swarm optimization (PSO) [7-9], differential evolution (DB) [10-13], teaching-learning-based optimization (TLBO)[14], Jaya [15], and a hybrid Jaya-GWO algorithm [16].
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
