
doi: 10.1049/pbce118e_ch5
This chapter deals with the development of model, simulation and hardware implementation of the synchronous motor (SM) drive under various operating conditions. In the modeling of vector-controlled PMSM drive, the complete model of the SM drive system is developed for different types of speed controllers with a view to improving the performance of the drive. The simulations of PMSM drive are carried out in MATLAB ® environment with Power System Blockset (PSB) and fuzzy logic control (FLC) toolboxes. The hardware of vector-controlled PMSM drive system includes control circuit, interfacing circuit and the power circuit. The control circuit is implemented in DSP ADMC401 and the power circuit consists of the voltage source inverter (VSI) and the PMSM. The interfacing circuit is required for feedback signals in the form of motor winding currents and position as well as rotational speed of the rotor. The DSP-based software algorithm is used to obtain the performance of the drive for starting, speed reversal, load perturbation and steady-state response for different types of closed-loop speed controllers. The simulated results are presented in this chapter along with DSP-based implementation results of developed prototype of drive to validate both the model and the control algorithms.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
