
doi: 10.1049/pbce074e_ch5
The design of feedback systems based on a 'mathematical model' of the plant should be insensitive to uncertainty associated with the parameters of the model. This is required since the system model parameters, in most cases, are only a best estimate of the real plant. The concepts of gain and phase margins evolved to guarantee closed-loop stability in the presence of specified uncertainty of the plant gain/phase characteristics. Thus, the design of 'robust' feedback systems has been extensively studied in the control literature. In the multivariable control setting, a wide range of robustness metrics has been postulated to character ise system behaviour under plant ignorance. The nature of the feedback design technique also influences the selection of appropriate robustness criteria, and this is also true for eigenstructure assignment. During the characterisation of eigenstructure assignment using state and output feedback, it was emphasised that for the solution to exist, the eigenvector matrix (X) must be non-singular. In this chapter this non-singularity of X will be numerically quantified and its relationship to the robustness of the resulting solution will be explained.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
