Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Information Secu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Information Security
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Information Security
Article . 2024
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

Functional Message Authentication Codes With Message and Function Privacy

Authors: Pu Li; Muhua Liu; Youlin Shang;

Functional Message Authentication Codes With Message and Function Privacy

Abstract

Functional signatures were allowed anyone to sign any messages in the range of function f , who possesses the secret key s k f . However, the existing construction does not satisfy the property of message and function privacy. In this paper, we propose a new notion which is called functional message authentication codes (MACs). In a functional MAC scheme, there are two types of secret keys. One is a master secret key which can be used to generate a valid tag for any messages. The other is authenticating keys for a function f , which can be used to authenticate any messages belonged to the range of f . Except the unforgeability, we require the proposed functional MAC to satisfy function and message privacy which indicates that the authenticating process reveals nothing other than the function values and the corresponding tags. We give a functional MAC construction based on a functional encryption (FE) scheme with function privacy, a perfectly binding commitment scheme, a standard signature scheme, and a symmetric encryption scheme with semantic security. Then, we show an application of functional MAC to constructing verifiable outsourcing computation, which ensures that the client does not accept an incorrect evaluation from the server with overwhelming probability.

Keywords

TK7885-7895, Computer engineering. Computer hardware, Electronic computers. Computer science, QA75.5-76.95

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold