Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kidney International
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Subcellular localization of glucocorticoid receptor protein in the human kidney glomerulus

Authors: Eiji Higashihara; Toru Shibata; Takao Kohsaka; Takashi Watanabe; Yukino Nishibori; Saeko Kataoka; Hirotoshi Tanaka; +8 Authors

Subcellular localization of glucocorticoid receptor protein in the human kidney glomerulus

Abstract

The detailed mechanisms of glucocorticoid action in idiopathic nephrotic syndrome and progressive glomerulonephritides have not been clearly elucidated. The pharmacological actions of glucocorticoids are mediated by their binding to an intracellular protein, the glucocorticoid receptor (GR). The determination of GR localization in normal glomerular cells is essential to elucidate the mechanisms of glucocorticoid action in various glomerular diseases.We carried out an immunoblot examination using antihuman GR-specific antibody and homogenates of isolated normal human glomeruli and mesangial cells in culture. Immunohistochemical examinations were also performed on normal human kidney specimens at light and electron microscopic levels. The nuclear translocation of GRs elicited by ligand binding was further investigated by confocal laser-scanning microscopic inspection of freshly isolated glomeruli and mesangial cells cultured with dexamethasone.An immunoblot examination demonstrated the presence of a 94 kDa protein, a molecular weight consistent with that of GRs, in the homogenates of glomeruli and cultured mesangial cells. By light microscopic examination, GRs were strongly detected in the nucleus and moderately in the cytoplasm of all glomerular cells, parietal and visceral epithelial cells, endothelial cells, and mesangial cells. By electron microscopic examination, the nuclear GRs of all glomerular cells were found to be diffusely distributed in the euchromatin. Additionally, the immunofluorescence intensities of nuclear GRs in isolated glomeruli and mesangial cells in culture became more intense by the addition of dexamethasone.Our findings suggest that all subsets of human glomerular cells definitely express the GR protein, which potentially undergoes translocation by glucocorticoids.

Keywords

Cell Nucleus, nephrotic syndrome, mesangial cell, ligand binding, Immunoblotting, Kidney Glomerulus, Dexamethasone, Glomerular Mesangium, progressive glomerulonephritis, Receptors, Glucocorticoid, Nephrology, Humans, Tissue Distribution, Fluorescent Antibody Technique, Indirect, Microscopy, Immunoelectron, glucocorticoid action, Glucocorticoids, Cells, Cultured, cell injury

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Average
hybrid