Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Monthly Notices of t...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2002 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2001
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Production of intermediate-mass black holes in globular clusters

Authors: Douglas P. Hamilton; M. Coleman Miller;

Production of intermediate-mass black holes in globular clusters

Abstract

The discovery of numerous non-nuclear X-ray point sources with luminosities L>10^39 erg/s in several starburst galaxies has stimulated speculation about their nature and origin. The strong variability seen in several sources points to massive black holes as the central engines. If the flux is isotropic, the luminosities range up to roughly 10^41 erg/s, implying masses of M>10^3 Msun if the luminosity is sub-Eddington. Here we explore a model for these sources. We suggest that in some tens of percent of globular clusters a very massive black hole, M>50 Msun, is formed. This black hole sinks in <10^6 yr to the center of the cluster, where in the 10^10 yr lifetime of the cluster it accretes roughly 10^3 Msun, primarily in the form of lighter black holes. Unlike less massive black holes in binaries, which are flung from clusters by recoil before they can merge gravitationally, a >50 Msun black hole has enough inertia that it remains bound to the cluster. We suggest that 10^3 Msun black holes may be common in the centers of dense globular clusters, and may therefore exist in some tens of percent of current globulars. If the cluster later merges with its host galaxy, accretion from young star clusters in molecular clouds by the black hole can generate luminosity consistent with that observed. We also consider the detectability of massive black holes in globular clusters with gravitational wave detectors such as LISA and LIGO, and speculate on future observations that may test our predictions.

9 pages, submitted to MNRAS

Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    412
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
412
Top 1%
Top 1%
Top 1%
Green
gold