
We present a new method for directly determining accurate, self-consistent cluster lens mass and shear maps in the strong lensing regime from the magnification bias of background galaxies. The method relies upon pixellisation of the surface mass density distribution which allows us to write down a simple, solvable set of equations. We also show how pixellisation can be applied to methods of mass determination from measurements of shear and present a simplified method of application. The method is demonstrated with cluster models and applied to magnification data from the lensing cluster Abell 1689.
5 pages, 4 figures. References added to introduction. Accepted by MNRAS
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
