
doi: 10.1042/ebc20180039
pmid: 31652313
Abstract DNA present in all our cells acts as a template by which cells are built. The human genome project, reading the code of the DNA within our cells, completed in 2003, is undoubtedly one of the great achievements of modern bioscience. Our ability to achieve this and to further understand and manipulate DNA has been tightly linked to our understanding of the bacterial and viral world. Outside of the science, the ability to understand and manipulate this code has far-reaching implications for society. In this article, we explore some of the basic techniques that enable us to read, copy and manipulate DNA sequences alongside a brief consideration of some of the implications for society.
Electrophoresis, Agar Gel, Genetic Vectors, Mutation, DNA, Recombinant, DNA, Genetic Testing, Cloning, Molecular, Plants, Genetically Modified, Polymerase Chain Reaction
Electrophoresis, Agar Gel, Genetic Vectors, Mutation, DNA, Recombinant, DNA, Genetic Testing, Cloning, Molecular, Plants, Genetically Modified, Polymerase Chain Reaction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
