Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Essays in Biochemist...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Essays in Biochemistry
Article . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ion channels and ion selectivity

Authors: Benoît, Roux;

Ion channels and ion selectivity

Abstract

Specific macromolecular transport systems, ion channels and pumps, provide the pathways to facilitate and control the passage of ions across the lipid membrane. Ion channels provide energetically favourable passage for ions to diffuse rapidly and passively according to their electrochemical potential. Selective ion channels are essential for the excitability of biological membranes: the action potential is a transient phenomenon that reflects the rapid opening and closing of voltage-dependent Na+-selective and K+-selective channels. One of the most critical functional aspects of K+ channels is their ability to remain highly selective for K+ over Na+ while allowing high-throughput ion conduction at a rate close to the diffusion limit. Permeation through the K+ channel selectivity filter is believed to proceed as a ‘knockon’ mechanism, in which 2–3 K+ ions interspersed by water molecules move in a single file. Permeation through the comparatively wider and less selective Na+ channels also proceeds via a loosely coupled knockon mechanism, although the ions do not need to be fully dehydrated. While simple structural concepts are often invoked to rationalize the mechanism of ion selectivity, a deeper analysis shows that subtle effects play an important role in these flexible dynamical structures.

Related Organizations
Keywords

Models, Molecular, Potassium Channels, Voltage-Gated, Molecular Dynamics Simulation, Ion Channels, Sodium Channels

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 1%
Top 10%
Top 10%
bronze