
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Inflammasomes are protein complexes in the innate immune system that regulate the production of pro-inflammatory cytokines and inflammatory cell death. Inflammasome activation and subsequent cell death often occur within minutes to an hour, so the pathway must be dynamically controlled to prevent excessive inflammation and the development of inflammatory diseases. Phosphorylation is a fundamental post-translational modification that allows rapid control over protein function and the phosphorylation of inflammasome proteins has emerged as a key regulatory step in inflammasome activation. Phosphorylation of inflammasome sensor and adapter proteins regulates their inter- and intra-molecular interactions, subcellular localisation, and function. The control of inflammasome phosphorylation may thus provide a new strategy for the development of anti-inflammatory therapeutics. Herein we describe the current knowledge of how phosphorylation operates as a critical switch for inflammasome signalling.
phosphorylation/dephosphorylation, Inflammasomes, 610, post translational modification, NLRP3, inflammasome, inflammation, Animals, Humans, Phosphorylation, Review Articles, Protein Processing, Post-Translational, Signal Transduction, Subcellular Fractions
phosphorylation/dephosphorylation, Inflammasomes, 610, post translational modification, NLRP3, inflammasome, inflammation, Animals, Humans, Phosphorylation, Review Articles, Protein Processing, Post-Translational, Signal Transduction, Subcellular Fractions
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
