
doi: 10.1042/bst0391136
pmid: 21936778
The myosin superfamily is diverse in its structure, kinetic mechanisms and cellular function. The enzymatic activities of most myosins are regulated by some means such as Ca2+ ion binding, phosphorylation or binding of other proteins. In the present review, we discuss the structural basis for the regulation of mammalian myosin 5a and Drosophila myosin 7a. We show that, although both myosins have a folded inactive state in which domains in the myosin tail interact with the motor domain, the details of the regulation of these two myosins differ greatly.
Models, Molecular, Melanosomes, Protein Conformation, Myosin VIIa, Myosin Type V, Animals, Humans, Protein Isoforms, Myosins, Actins
Models, Molecular, Melanosomes, Protein Conformation, Myosin VIIa, Myosin Type V, Animals, Humans, Protein Isoforms, Myosins, Actins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
