Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ceruloplasmin in neurodegenerative diseases

Authors: Sarah J. Texel; Z. Leah Harris; Xueying Xu;

Ceruloplasmin in neurodegenerative diseases

Abstract

Two decades ago, patients lacking circulating serum ceruloplasmin (Cp) presented with neurodegeneration associated with brain iron accumulation. These patients, with mutations in the MCO (multi-copper oxidase), Cp, revealed an essential role for Cp in iron homoeostasis. The patients were diagnosed in adulthood with CNS (central nervous system) disease and progressed rapidly, making understanding the mechanism of disease imperative. We now know that (i) Cp regulates the efficiency of iron efflux, (ii) Cp stabilizes ferroportin membrane expression, (iii) GPI (glycosylphosphatidylinositol)-linked Cp is the predominant form expressed in brain, (iv) Cp functions as a ferroxidase and regulates the oxidation of Fe2+ to Fe3+, (v) Cp does not bind to transferrin directly, and (vi) Cp is one member of a family of mammalian MCOs, which includes hephaestin. It is still unclear how an absence of Cp results in neurodegeneration: is the iron accumulation a primary or secondary injury? Although it is attractive to invoke an iron-mediated oxidative stress mechanism for the neuronal injury and degeneration in aceruloplasminaemia, our data suggest limited redox injury in the brains of mice lacking MCO. In fact, we propose a role for neuronal iron starvation with associated astrocyte and microglial iron overload. With the defect in aceruloplasminaemia being one of inefficient iron efflux from macrophages, we believe that the iron is trapped in a compartment not readily available to participate in oxyradical injury. It is likely that different mechanisms of neuronal cell protection are offered by astrocytes and microglia, and, once these cells are damaged, neuronal survival is compromised.

Related Organizations
Keywords

Central Nervous System, Neurons, Iron, Animals, Ceruloplasmin, Humans, Neurodegenerative Diseases, Oxidoreductases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!