Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Auxin signal transduction

Authors: Gretchen, Hagen;

Auxin signal transduction

Abstract

The plant hormone auxin (indole-3-acetic acid, IAA) controls growth and developmental responses throughout the life of a plant. A combination of molecular, genetic and biochemical approaches has identified several key components involved in auxin signal transduction. Rapid auxin responses in the nucleus include transcriptional activation of auxin-regulated genes and degradation of transcriptional repressor proteins. The nuclear auxin receptor is an integral component of the protein degradation machinery. Although auxin signalling in the nucleus appears to be short and simple, recent studies indicate that there is a high degree of diversity and complexity, largely due to the existence of multigene families for each of the major molecular components. Current studies are attempting to identify interacting partners among these families, and to define the molecular mechanisms involved in the interactions. Future goals are to determine the levels of regulation of the key components of the transcriptional complex, to identify higher-order complexes and to integrate this pathway with other auxin signal transduction pathways, such as the pathway that is activated by auxin binding to a different receptor at the outer surface of the plasma membrane. In this case, auxin binding triggers a signal cascade that affects a number of rapid cytoplasmic responses. Details of this pathway are currently under investigation.

Related Organizations
Keywords

Indoleacetic Acids, Plant Growth Regulators, Genes, Plant, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!