
doi: 10.1042/bse0550079
pmid: 24070473
During the last decade it has become evident that autophagy is not simply a non-selective bulk degradation pathway for intracellular components. On the contrary, the discovery and characterization of autophagy receptors which target specific cargo for lysosomal degradation by interaction with ATG8 (autophagy-related protein 8)/LC3 (light-chain 3) has accelerated our understanding of selective autophagy. A number of autophagy receptors have been identified which specifically mediate the selective autophagosomal degradation of a variety of cargoes including protein aggregates, signalling complexes, midbody rings, mitochondria and bacterial pathogens. In the present chapter, we discuss these autophagy receptors, their binding to ATG8/LC3 proteins and how they act in ubiquitin-mediated selective autophagy of intracellular bacteria (xenophagy) and protein aggregates (aggrephagy).
Membrane Glycoproteins, Autophagy, Animals, Humans, Microtubule-Associated Proteins, Ubiquitins, Adaptor Proteins, Signal Transducing, Substrate Specificity
Membrane Glycoproteins, Autophagy, Animals, Humans, Microtubule-Associated Proteins, Ubiquitins, Adaptor Proteins, Signal Transducing, Substrate Specificity
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 103 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
