Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mitochondrial metabolite transport

Authors: PALMIERI F; PIERRI, CIRO LEONARDO;

Mitochondrial metabolite transport

Abstract

The flux of a variety of metabolites, nucleotides and coenzymes across the inner membrane of mitochondria is catalysed by a nuclear-coded superfamily of secondary transport proteins called MCs (mitochondrial carriers). The importance of MCs is demonstrated by their wide distribution in all eukaryotes, their role in numerous metabolic pathways and cell functions, and the identification of several diseases caused by alterations of their genes. MCs can easily be recognized in databases thanks to their striking sequence features. Until now, 22 MC subfamilies, which are well conserved throughout evolution, have been functionally characterized, mainly by transport assays upon heterologous gene expression, purification and reconstitution into liposomes. Given the significant sequence conservation, it is thought that all MCs use the same basic transport mechanism, although they exhibit different modes of transport and driving forces and their substrates vary in nature and size. Based on substrate specificity, sequence conservation and carrier homology models, progress has recently been made in understanding the transport mechanism of MCs by new insights concerning the existence of a substrate-binding site in the carrier cavity, of cytosolic and matrix gates and conserved proline and glycine residues in each of the six transmembrane α-helices. These structural properties are believed to play an important role in the conformational changes required for substrate translocation.

Country
Italy
Related Organizations
Keywords

Mitochondrial Proteins, Animals, Humans, Membrane Transport Proteins, Biological Transport, Phylogeny, Mitochondria

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    171
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
171
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!