Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Journal
Article . 1990 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lipoamidase is a multiple hydrolase

Authors: J Oizumi; K Hayakawa;

Lipoamidase is a multiple hydrolase

Abstract

The substrate specificity of lipoamidase, purified from the pig brain membrane with lipoyl 4-aminobenzoate (LPAB) as a substrate, was extensively studied. This single polypeptide was found to hydrolyse the bonding between amide, ester and peptide compounds. However, stringent structural requirements were found in the substrates, e.g. LPAB was hydrolysed, whereas biotinyl 4-aminobenzoate was not, as stated in our previous paper [Oizmui & Hayakawa (1990) Biochem. J. 266, 427-434]. The enzyme specifically recognized the whole molecular structure of the substrate, whereas it loosely recognized the bond structure of the substrate; e.g. the dipeptide Asp-Phe was not hydrolysed, whereas the methyl ester of Asp-Phe (aspartame) was. The exopeptidase activity was demonstrated by lipoamidase; however, longer peptides than the hexamer seemed not to be substrates. Lipoyl esters, which were electrically neutral, exhibited higher specificity with longer acyl groups. Molecular mass and molecular hydrophobicity (hydropathy) seemed to determine the substrate specificity. Lipoyl-lysine, acetylcholine and oligopeptides were hydrolysed at similar Km values; however, acetylcholine was hydrolysed at a velocity 100 times higher. Although many similar specificities were found between electric eel acetylcholinesterase and lipoamidase, distinctly different specificity was demonstrated with lipoyl compounds. The role of lipoamidase, which resides on the brain membrane and possesses higher specificity for hydrophobic molecules, remains to be elucidated.

Keywords

Hydrolases, Swine, Cell Membrane, Molecular Sequence Data, Brain, Dipeptides, Acetylcholine, Amidohydrolases, Substrate Specificity, Acetylcholinesterase, Animals, Amino Acid Sequence, Cholinesterase Inhibitors, Peptides, Oligopeptides

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Average
bronze