
Cysteamine oxidation was shown to be catalysed by nanomolar concentrations of myeloperoxidase in a peroxidase-oxidase reaction, i.e. an O2-consuming oxidation of a compound catalysed by peroxidase without H2O2 addition. When auto-oxidation of the thiol was prevented by the metal-ion chelator diethylenetriaminepenta-acetic acid, native, but not heat-inactivated, myeloperoxidase induced changes in the u.v.-light-absorption spectrum of cysteamine. These changes were consistent with disulphide (cystamine) formation. Concomitantly, O2 was consumed and superoxide radical anion formation could be detected by Nitro Blue Tetrazolium reduction. Both superoxide dismutase and catalase inhibited the reaction, whereas the hydroxyl-radical scavengers mannitol and ethanol did not. O2 consumption increased with increasing pH (between pH 6.0 and 8.0), and 50% inhibition was exhibited by about 3 mM-NaCl at pH 7.0 and by about 100 mM-NaCl at pH 8.0. Cysteamine was about 5 times as active (in terms of increased O2 consumption at pH 7.5) as the previously reported peroxidase-oxidase substrates NADPH, dihydroxyfumaric acid and indol-3-ylacetic acid. A possible reaction pathway for the myeloperoxidase-oxidase oxidation of cysteamine is discussed. These results indicate that cysteamine is a very useful substrate for studies on myeloperoxidase-oxidase activity.
Hydroxyl Radical, Sodium Hypochlorite, Superoxide Dismutase, Cysteamine, Hydrogen-Ion Concentration, Catalase, Substrate Specificity, Oxygen Consumption, Chlorides, Hydroxides, Humans, Spectrophotometry, Ultraviolet, Oxidation-Reduction, Peroxidase
Hydroxyl Radical, Sodium Hypochlorite, Superoxide Dismutase, Cysteamine, Hydrogen-Ion Concentration, Catalase, Substrate Specificity, Oxygen Consumption, Chlorides, Hydroxides, Humans, Spectrophotometry, Ultraviolet, Oxidation-Reduction, Peroxidase
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
