Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High intensity exercise inhibits carnitine palmitoyltransferase-I sensitivity to l-carnitine

Authors: Heather L. Petrick; Graham P. Holloway;

High intensity exercise inhibits carnitine palmitoyltransferase-I sensitivity to l-carnitine

Abstract

Abstract The decline in fat oxidation at higher power outputs of exercise is a complex interaction between several mechanisms; however, the influence of mitochondrial bioenergetics in this process remains elusive. Therefore, using permeabilized muscle fibers from mouse skeletal muscle, we aimed to determine if acute exercise altered mitochondrial sensitivity to (1) adenosine diphosphate (ADP) and inorganic phosphate (Pi), or (2) carnitine palmitoyltransferase-I (CPT-I) independent (palmitoylcarnitine, PC) and dependent [palmitoyl-CoA (P-CoA), malonyl-CoA (M-CoA), and l-carnitine] substrates, in an intensity-dependent manner. As the apparent ADP Km increased to a similar extent following low (LI) and high (HI) intensity exercise compared with sedentary (SED) animals, and Pi sensitivity was unaltered by exercise, regulation of phosphate provision likely does not contribute to the well-established intensity-dependent shift in substrate utilization. Mitochondrial sensitivity to PC and P-CoA was not influenced by exercise, while M-CoA sensitivity was attenuated similarly following LI and HI. In contrast, CPT-I sensitivity to l-carnitine was only altered following HI, as HI exercise attenuated l-carnitine sensitivity by ∼40%. Moreover, modeling the in vivo concentrations of l-carnitine and P-CoA during exercise suggests that CPT-I flux is ∼25% lower following HI, attributed equally to reductions in l-carnitine content and l-carnitine sensitivity. Altogether, these data further implicate CPT-I flux as a key event influencing metabolic interactions during exercise, as a decline in l-carnitine sensitivity in addition to availability at higher power outputs could impair mitochondrial fatty acid oxidation.

Related Organizations
Keywords

Mice, Carnitine O-Palmitoyltransferase, Carnitine, Physical Conditioning, Animal, Animals, Mitochondria, Muscle

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!