
doi: 10.1039/fd9929300067
pmid: 1290940
The action of xylose isomerase depends on the presence of two divalent cations. Crystal structure analyses of the free enzyme, and of the enzyme bound to a variety of substrates and inhibitors, have provided models for a number of distinct intermediates along the reaction pathway. These models, in turn, have suggested detailed mechanisms for the various chemical steps of the reaction: a ring opening catalysed by an activated histidine, a hydride-shift isomerization, and a ring closure which may be facilitated by a polarised water molecule.
Structure-Activity Relationship, Binding Sites, Protein Conformation, Carbohydrate Epimerases, Aldose-Ketose Isomerases
Structure-Activity Relationship, Binding Sites, Protein Conformation, Carbohydrate Epimerases, Aldose-Ketose Isomerases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
