Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Graphene oxide strongly inhibits amyloid beta fibrillation

Authors: Mahmoudi, Morteza; Akhavan, Omid; Ghavami, Mahdi; Rezaee, Farhad; Ghiasi, Seyyed Mohammad Amin;

Graphene oxide strongly inhibits amyloid beta fibrillation

Abstract

Since amyloid beta fibrillation (AβF) plays an important role in the development of neurodegenerative diseases, we investigated the effect of graphene oxide (GO) and their protein-coated surfaces on the kinetics of Aβ fibrillation in the aqueous solution. We showed that GO and their protein-covered surfaces delay the AβF process via adsorption of amyloid monomers. Also, the large available surface of GO sheets can delay the AβF process by adsorption of amyloid monomers. The inhibitory effect of the GO sheet was increased when we increase the concentration from 10% (in vitro; stimulated media) to 100% (in vivo; stimulated media).our results revealed that GO and their surface proteins inhibit AβF by decreasing the kinetic reaction.

Country
Netherlands
Keywords

GRAPHITE, Amyloid beta-Peptides, A-BETA-42, Water, Oxides, PROTEIN-NANOPARTICLE INTERACTIONS, AGGREGATION, Microscopy, Atomic Force, TOXICITY, Kinetics, NEURODEGENERATIVE DISEASE, FIBRILLOGENESIS, BACTERIA, Graphite, Adsorption, NANOWALLS, ATOMIC-FORCE MICROSCOPY

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    215
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
215
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!