
doi: 10.1039/c2fd20103h
pmid: 23285619
It is now forty six years since the separate topics of friction, lubrication, wear and bearing design were integrated under the title 'Tribology' [Department of Education and Science, Lubrication (Tribology) Education and Research. A Report on the Present Position and Industry's Needs, HMSO, London, 1966]. Significant developments have been reported in many established and new aspects of tribology during this period. The subject has contributed to improved performance of much familiar equipment, such as reciprocating engines, where there have been vast improvements in engine reliability and efficiency. Nano-tribology has been central to remarkable advances in information processing and digital equipment. Shortly after widespread introduction of the term tribology, integration with biology and medicine prompted rapid and extensive interest in the fascinating sub-field now known as Bio-tribology [D. Dowson and V. Wright, Bio-tribology, in The Rheology of Lubricants, ed. T. C. Davenport, Applied Science Publishers, Barking, 1973, pp. 81-88]. An outline will be given of some of the developments in the latter field.
Friction, Biocompatible Materials, Prosthesis Design, Biomechanical Phenomena, Prosthesis Failure, Weight-Bearing, Dental Prosthesis, Lubrication, Materials Testing, Synovial Fluid, Animals, Humans, Joints, Hip Prosthesis, Knee Prosthesis
Friction, Biocompatible Materials, Prosthesis Design, Biomechanical Phenomena, Prosthesis Failure, Weight-Bearing, Dental Prosthesis, Lubrication, Materials Testing, Synovial Fluid, Animals, Humans, Joints, Hip Prosthesis, Knee Prosthesis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 101 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
