
doi: 10.1039/c1cp22132a
pmid: 21971264
The phase stability of nanocrystallites with metastable crystal structures under ambient conditions is usually attributed to their small grain size. It remains a challenging problem to maintain such phase integrity of these nanomaterials when their crystallite sizes become larger. Here we report an experimental-modelling approach to study the roles of nitrogen dopants in the formation and stabilization of cubic ZrO(2) nanocrystalline films. Mixed nitrogen and argon ion beam assisted deposition (IBAD) was applied to produce nitrogen-implanted cubic ZrO(2) nanocrystallites with grain sizes of 8-13 nm. Upon thermal annealing, the atomic structure of these ZrO(2) films was observed to evolve from a cubic phase, to a tetragonal phase and then a monoclinic phase. Our X-ray absorption near edge structure study on the annealed samples together with first-principle modelling revealed the significance of the interstitial nitrogen in the phase stabilization of nitrogen implanted cubic ZrO(2) crystallites via the soft mode hardening mechanism.
Models, Molecular, Microscopy, Electron, Transmission, Nitrogen, Quantum Theory, Zirconium, Crystallography, X-Ray, Phase Transition, Nanostructures
Models, Molecular, Microscopy, Electron, Transmission, Nitrogen, Quantum Theory, Zirconium, Crystallography, X-Ray, Phase Transition, Nanostructures
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
