Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption

Authors: Ren-Hau, Lai; Michael J, Miller; Elizabeth, Jeffery;

Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption

Abstract

In the absence of the plant enzyme myrosinase, such as in cooked broccoli, glucoraphanin is considered to be hydrolyzed by bacteria in the lower gut to produce the bioactive isothiocyanate sulforaphane. Simulated digestion using US Pharmacopeia methods caused no loss of glucoraphanin, confirming that glucoraphanin is not destroyed by digestive enzymes during passage through the digestive tract and is able to reach the rat cecum intact. Introduction of glucoraphanin (150 μmol/kg BW) directly into the cecum resulted in appearance of isothiocyanates in the mesenteric plasma by 120 min. In contrast, introduction of sulforaphane (150 μmol/kg BW) directly into the cecum resulted in the appearance of isothiocyanates in the mesenteric plasma within 15 min. Plasma levels remained constant for over an hour. Anaerobic incubation ex vivo of cecal microbiota from male F344 rats with glucoraphanin resulted in very low levels of the hydrolytic metabolite erucin nitrile, showing that hydrolysis of glucosinolates is carried out by cecal microbiota, but metabolism ex vivo by microbiota did not reflect not reflect metabolism in situ. These data are the first to report direct evidence of hydrolysis of glucoraphanin to sulforaphane in the cecum of rats and to show that sulforaphane is able to cross the cecal enterocyte for systemic absorption.

Keywords

Male, Hydrolysis, Glucosinolates, Brassica, Hydrogen-Ion Concentration, Rats, Inbred F344, Enzymes, Rats, Enterocytes, Intestinal Absorption, Isothiocyanates, Sulfoxides, Imidoesters, Oximes, Animals, Metagenome, Digestion, Cecum, Thiocyanates

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!