Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

How does Proteinase 3 interact with lipid bilayers?

Authors: Torben, Broemstrup; Nathalie, Reuter;

How does Proteinase 3 interact with lipid bilayers?

Abstract

Proteinase 3 (PR3) is a serine protease of the neutrophils whose membrane expression is relevant in a number of inflammatory pathologies. It has been shown to strongly interact with reconstituted bilayers containing dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) or mixtures of both phospholipids. Here we present the results of molecular dynamics simulations of PR3 anchored at three different phospholipid bilayers: DMPC, DMPG and an equimolar mixture of DMPC/DMPG. We present for the first time a detailed model of membrane-bound PR3. A thorough inventory of the interaction between the lipids and the enzyme reveals three types of interactions contributing to the anchorage of PR3. Basic residues (R177, R186A, R186B, K187 and R222) interact via hydrogen bonds with the lipid headgroups to stabilize PR3 at the interfacial membrane region. Hydrophobic amino acids (V163, F165, F166, I217, L223, and F224) insert into the hydrophobic core below the carbonyl groups of the bilayers and six aromatic amino acids (F165, F192, F215, W218, F224, and F227) contribute electrostatic interaction via cation-pi interactions with the choline groups of DMPC. PR3 presents all the characteristics of a peripheral membrane protein with an ability to bind negative phospholipids. Although the catalytic triad remains unperturbed by the presence of the membrane, the ligand binding sites are located in close proximity to the membrane and amino acids K99 and I217 interact significantly with the lipids. We expect the binding of long ligands to be modified by the presence of the lipids.

Related Organizations
Keywords

Binding Sites, Myeloblastin, Phenylalanine, Cell Membrane, Lipid Bilayers, Static Electricity, Tryptophan, Hydrogen Bonding, Phosphatidylglycerols, Molecular Dynamics Simulation, Choline, Cations, Tyrosine, Dimyristoylphosphatidylcholine, Hydrophobic and Hydrophilic Interactions

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!