<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Communication between different brain regions, and between local circuits in the same brain region, is an important area of study for basic and translational neuroscience research. Selective and chronic manipulation of one of the components in a given neural pathway is frequently required for development and plasticity studies. We designed an in vitro platform that captures some of the complexity of mammalian brain pathways but permits easy experimental manipulation of their constituent parts. Organotypic cultures of brain slices were carried out in compartments interconnected by microchannels. We show that co-cultures from cortex and hippocampus formed functional connections by extending axons through the microchannels. We report synchronization of neural activity in co-cultures, and demonstrate selective pharmacological manipulation of activity in the constituent slices. Our platform enables chronic, spatially-restricted experimental manipulation of pre- and post-synaptic neurons in organotypic cultures, and will be useful to investigators seeking to understand development, plasticity, and pathologies of neural pathways.
Neurons, Action Potentials, Equipment Design, Microfluidic Analytical Techniques, Hippocampus, Rats, Equipment Failure Analysis, Organ Culture Techniques, Neural Pathways, Animals, Nerve Net, Electrodes, Cells, Cultured
Neurons, Action Potentials, Equipment Design, Microfluidic Analytical Techniques, Hippocampus, Rats, Equipment Failure Analysis, Organ Culture Techniques, Neural Pathways, Animals, Nerve Net, Electrodes, Cells, Cultured
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 76 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |