Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Fourier microfluidics

Authors: Y, Xie; Y, Wang; L, Chen; C H, Mastrangelo;

Fourier microfluidics

Abstract

We present a new experimental technique for the separation of dynamic chemical signals based on their frequency domain characteristics. Such a technique can be used to create filters that separate slow signals from fast signals from a common input flow stream. The propagation of time-varying chemical waves through networks of microfluidic channels is first examined. Mathematical models and a set of simple experiments are developed that demonstrate that short microfluidic channels behave as linear delay lines. The observed dispersive broadening and delay behavior can be explained in Fourier space in terms of corresponding phase delay, amplitude decay and characteristic transfer functions. Such delay components can be utilized to implement frequency dependent interference filters. An 8th order PDMS bandpass filter chip demonstrating these ideas was constructed. The filter chip has a central frequency of 0.17 Hz and a bandwith of 0.04 Hz at a flow rate of 4 microL h(-1).

Related Organizations
Keywords

Equipment Failure Analysis, Time Factors, Fourier Analysis, Equipment Design, Microfluidic Analytical Techniques, Models, Theoretical, Sensitivity and Specificity, Fluorescence, Fluorescent Dyes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!