
doi: 10.1039/b714947f
pmid: 32907087
Cell attractive or non-attractive surface properties of polyurethane devices can be controlled by treating them with zirconium tetra(tert-butoxide). This gives reactive interfacial zirconium complex species that can be used subsequently to bond cell attractive peptides such as arg-gly-asp (RGD) or cell non-attractive organics such as polyethylene glycol (PEG) to the device surface. Control of the surface properties of the polyurethane occurs on the nanoscale, and does not compromise the physical properties of the polymer. Interfacial Zr complex formation occurs at N-H sites of the polyurethane; therefore surface loadings of the Zr complex depend on the spatial separation of these N-H groups in the polymer backbone. A complex loading of 110 ± 15 pmol cm-2 is achieved on poly(hexamethylenehexylene)urethane, and 40 ± 10 pmol cm-2 is bound on the medically relevant polyurethane, tecoflex®. About 25% and 10% of these polymer surfaces, respectively, can be covered by RGD via the zirconium complex interface; because of its greater size, about 100% of both polymer surfaces is covered by PEG. The response of 3T3 fibroblasts to surface-treated and untreated tecoflex® is described.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
