
doi: 10.1039/b701816a
pmid: 17592577
Electrochemical DNA biosensors exploit the affinity of single-stranded DNA for complementary strands of DNA and are used in the detection of specific sequences of DNA with a view towards developing portable analytical devices. Great progress has been made in this field but there are still numerous challenges to overcome. This review for researchers new to the field describes the components of electrochemical DNA biosensors and the important issues in their design. Methods of transducing DNA binding events are discussed along with future directions for DNA biosensors.
Microchemistry, Electrochemistry, Animals, Humans, Biosensing Techniques, DNA, In Situ Hybridization
Microchemistry, Electrochemistry, Animals, Humans, Biosensing Techniques, DNA, In Situ Hybridization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 230 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
