
doi: 10.1039/b616819a
pmid: 17347701
Thrombin is a Na(+)-activated, allosteric serine protease that plays multiple functional roles in blood pathophysiology. Binding of Na(+) is the major driving force behind the procoagulant, prothrombotic and signaling functions of the enzyme. This review summarizes our current understanding of the molecular basis of thrombin allostery with special emphasis on the kinetic aspects of Na(+) activation. The molecular mechanism of thrombin allostery is a remarkable example of long-range communication that offers a paradigm for many other biological systems.
Models, Molecular, Binding Sites, Sodium, Models, Cardiovascular, Thrombin, Enzyme Activation, Structure-Activity Relationship, Models, Chemical, Computer Simulation, Blood Coagulation, Protein Binding
Models, Molecular, Binding Sites, Sodium, Models, Cardiovascular, Thrombin, Enzyme Activation, Structure-Activity Relationship, Models, Chemical, Computer Simulation, Blood Coagulation, Protein Binding
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 47 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
