
doi: 10.1039/b613414a
pmid: 17268620
The soil dwelling nematode, Caenorhabditis (C.) elegans, is a popular model system for studying behavioral plasticity. Noticeably absent from the C. elegans literature, however, are studies evaluating worm behavior in mazes. Here, we report the use of microfluidic mazes to investigate exploration and learning behaviors in wild-type C. elegans, as well as in the dopamine-poor mutant, cat-2. The key research findings include: (1)C. elegans worms are motivated to explore complex spatial environments with or without the presence of food/reward, (2) wild-type worms exhibit a greater tendency to explore relative to mutant worms, (3) both wild-type and mutant worms can learn to make unconditioned responses to food/reward, and (4) wild-type worms are significantly more likely to learn to make conditioned responses linking reward to location than mutant worms. These results introduce microfluidic mazes as a valuable new tool for biological behavioral analysis.
Time Factors, Behavior, Animal, Genotype, Movement, Microfluidic Analytical Techniques, Motor Activity, Models, Biological, Mutation, Animals, Caenorhabditis elegans, Maze Learning
Time Factors, Behavior, Animal, Genotype, Movement, Microfluidic Analytical Techniques, Motor Activity, Models, Biological, Mutation, Animals, Caenorhabditis elegans, Maze Learning
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 121 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
