<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We present a thermodynamic evaluation of the self-assembly of charged nanometer-sized particles at the water/oil interface. The chemical potentials of the nanoparticles in the bulk (aqueous) phase and at the water/oil interface are calculated taking into account interfacial energies, van der Waals interactions, and electrostatic repulsions. An isotherm of the interfacial particle density as a function of the surface charge density on the particles is obtained and compared with experimental results on gold and CdTe nanoparticles self-assembled at the water/heptane interface. Our model provides a semi-quantitative explanation for the spontaneous self-assembly of several types of metallic and semiconducting charged nanoparticles upon reduction of their surface charge.
Microscopy, Confocal, Surface Properties, Water, Hydrogen-Ion Concentration, Surface Plasmon Resonance, Heptanes, Nanoparticles, Physical Chemistry (incl. Structural, Glass, Gold, Oils
Microscopy, Confocal, Surface Properties, Water, Hydrogen-Ion Concentration, Surface Plasmon Resonance, Heptanes, Nanoparticles, Physical Chemistry (incl. Structural, Glass, Gold, Oils
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 185 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |