
The yield stress of many yield stress fluids has turned out to be difficult to determine experimentally. This has led to various discussions in the literature about those experimental difficulties, and the usefulness and pertinence of the concept of yield stress fluids. We argue here that most of the difficulties disappear when taking the thixotropy of yield stress fluids into account, and will demonstrate an experimental protocol that allows reproducible data to be obtained for the critical stress necessary for flow of these fluids. As a bonus, we will show that the interplay of yield stress and thixotropy allows one to account for the ubiquitous shear localization observed in these materials. However, due to the thixotropy the yield stress is no longer a material property, since it depends on the (shear) history of the sample.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 480 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
