<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
doi: 10.1039/b506240n
pmid: 16512382
Incorporation of a third, gate electrode in the device geometry of molecular junctions necessary to identify the transport mechanism. At present, the most popular technique fabricate three-terminal molecular devices makes use of electromigration. Although it statistical process, we show that control over the gap resistance can be obtained. A detailed analysis of the current-voltage characteristics of gaps without molecules, however, shows that they reveal features that can mistakenly be attributed to molecular transport. This observation raises questions about which gaps with molecules can be disregarded which not. We show that electrical characteristics can be controlled by the rational design of the molecular bridge and that vibrational modes probed by electrical transport are potential interest as molecular fingerprints.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 85 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |