Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Photochemical & Phot...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Photochemical & Photobiological Sciences
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quenching of the fluorescence of pterin derivatives by anions

Authors: Carolina, Lorente; Alberto L, Capparelli; Andrés H, Thomas; André M, Braun; Esther, Oliveros;

Quenching of the fluorescence of pterin derivatives by anions

Abstract

Steady-state and time-resolved studies of the fluorescence of pterins in aqueous solutions in the presence of different anions have been performed using the single-photon counting technique. In the pH range between 3 and 13, most pterins exist in a protonated and a deprotonated form. Results obtained for both acid and basic forms of five compounds belonging to the pterin family (pterin, 6-carboxypterin, 6-formylpterin, biopterin and neopterin) show that the fluorescence of the acid forms is dynamically quenched by phosphate and acetate, and the corresponding bimolecular rate constants of fluorescence quenching (k(q)) are reported. These results are of importance from the technical and analytical points of view because measurements of the fluorescence of pterin derivatives for a variety of purposes are often performed in the presence of salts, especially buffers, and significant quenching of the pterin fluorescence by the buffer might lead to errors in interpretation and erroneous conclusions. No quenching of the fluorescence of the acid forms by chloride, sulfate or nitrate was detected. The fluorescence of the basic forms was either not quenched by anions or any such quenching was negligible in comparison with that observed for the acid forms.

Keywords

Anions, Kinetics, Photolysis, Spectrometry, Fluorescence, Molecular Structure, Hydrogen-Ion Concentration, Pterins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!