
AbstractBulk insulators with strong spin orbit coupling exhibit metallic surface states possessing topological order protected by the time reversal symmetry. However, experiments show vulnerability of topological states to aging and impurities. Different studies show contrasting behavior of the Dirac states along with plethora of anomalies, which has become an outstanding problem in material science. Here, we probe the electronic structure of Bi2Se3 employing high resolution photoemission spectroscopy and discover the dependence of the behavior of Dirac particles on surface terminations. The Dirac cone apex appears at different binding energies and exhibits contrasting shift on Bi and Se terminated surfaces with complex time dependence emerging from subtle adsorbed oxygen-surface atom interactions. These results uncover the surface states behavior of real systems and the dichotomy of topological and normal surface states important for device fabrication as well as realization of novel physics such as Majorana Fermions, magnetic monopole, etc.
TK, QC, Article
TK, QC, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
