
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 16007191
Proapoptotic Bcl-2 family members alter mitochondrial permeability resulting in the release of apoptogenic factors that initiate a caspase cascade. These changes are well described; however, the effects of caspases on mitochondrial function are less well characterized. Here we describe the consequence of caspase-9 and effector caspase inhibition on mitochondrial physiology during intrinsic cell death. Caspase inhibition prevents the complete loss of mitochondrial membrane potential without affecting cytochrome c release. When effector caspases are inhibited, mitochondria become uncoupled and produce reactive oxygen species. Interestingly, the effector caspase-mediated depolarization of the mitochondria occurs independent of the activity of complexes I-IV of the electron transport chain. In contrast, caspase-9 inhibition prevents mitochondrial uncoupling and ROS production and allows for continued electron transport despite the release of cytochrome c. Taken together, these data suggest that activated caspase-9 prevents the accessibility of cytochrome c to complex III, resulting in the production of reactive oxygen species, and that effector caspases may depolarize mitochondria to terminate ROS production and preserve an apoptotic phenotype.
Cytochromes c, Apoptosis, Caspase Inhibitors, Caspase 9, Cell Line, Mitochondria, Electron Transport, Mice, Caspases, Animals, Interleukin-3, Reactive Oxygen Species
Cytochromes c, Apoptosis, Caspase Inhibitors, Caspase 9, Cell Line, Mitochondria, Electron Transport, Mice, Caspases, Animals, Interleukin-3, Reactive Oxygen Species
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
