<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract Important aspects concerning the origin and formation of the Moon’s exosphere, its tenuous gas envelope, remain puzzling with uncertainties regarding the importance of different effects. Two competing processes — micrometeoroid impact vaporization and solar wind ion sputtering — are considered key contributors to the ejection of particles into the exosphere. Here we present direct, high-precision yield measurements of solar wind ion sputtering using real lunar samples (Apollo 16 sample 68501), combined with advanced 3D simulations of regolith erosion. We find solar wind sputter yields up to an order of magnitude lower than previously used in exosphere models. The difference is primarily due to the suppressive effects of surface morphology, in particular the roughness and high porosity of the lunar regolith. Our results provide critical, experimentally validated sputter yield estimates and address long-standing modeling uncertainties. These results are particularly timely in light of upcoming and ongoing missions, such as the Artemis program at the Moon or BepiColombo at Mercury, contributing essentially to our understanding of how the surfaces of rocky bodies in the solar system are altered.
Fusion, plasma och rymdfysik, Space physics, Astronomi, astrofysik och kosmologi, Astronomy, Astrophysics and Cosmology, Fusion, Plasma and Space Physics, Rings and moons, Article
Fusion, plasma och rymdfysik, Space physics, Astronomi, astrofysik och kosmologi, Astronomy, Astrophysics and Cosmology, Fusion, Plasma and Space Physics, Rings and moons, Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |