
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 11581/467153
AbstractWater and carbon dioxide are the most abundant volatile components in terrestrial magmas. As they exsolve into magmatic vapour, they promote magma buoyancy, accelerating ascent and modulating eruptive dynamics. It is commonly thought that an increase in pre-eruptive volatile content produces an increase in eruption intensity. Using a conduit model for basaltic eruptions, covering the upper 6 km of conduit, we show that for the same chamber conditions mass eruption rate is not affected by CO2 content, whereas an increase in H2O up to 10 wt.% produces an increase in eruption rate of an order of magnitude. It is only when CO2 is injected in the magma reservoir from an external source that the resulting pressurisation will generate a strong increase in eruption rate. Results also show that ascent velocity and fragmentation depth are strongly affected by pre-eruptive volatile contents demonstrating a link between volatile content and eruptive style.
Environmental sciences, QE1-996.5, Geology, GE1-350
Environmental sciences, QE1-996.5, Geology, GE1-350
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
