Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Reviews Physics
Article . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Topological active matter

Authors: Suraj Shankar; Anton Souslov; Mark J. Bowick; M. Cristina Marchetti; Vincenzo Vitelli;

Topological active matter

Abstract

Active matter encompasses different nonequilibrium systems in which individual constituents convert energy into non-conservative forces or motion at the microscale. This review provides an elementary introduction to the role of topology in active matter through experimentally relevant examples. Here, the focus lies on topological defects and topologically protected edge modes with an emphasis on the distinctive properties they acquire in active media. These paradigmatic examples represent two physically distinct classes of phenomena whose robustness can be traced to a common mathematical origin: the presence of topological invariants. These invariants are typically integer numbers that cannot be changed by continuous deformations of the relevant order parameters or physical parameters of the underlying medium. We first explain the mechanisms whereby topological defects self propel and proliferate in active nematics, leading to collective states which can be manipulated by geometry and patterning. Possible implications for active microfluidics and biological tissues are presented. We then illustrate how the propagation of waves in active fluids and solids is affected by the presence of topological invariants characterizing their dispersion relations. We discuss the relevance of these ideas for the design of robotic metamaterials and the properties of active granular and colloidal systems. Open theoretical and experimental challenges are presented as future research prospects.

23 pages, 3 figures, 4 boxes

Country
United Kingdom
Keywords

Condensed Matter - Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Soft Condensed Matter (cond-mat.soft), Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Condensed Matter - Soft Condensed Matter, /dk/atira/pure/subjectarea/asjc/3100/3100; name=General Physics and Astronomy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    226
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
226
Top 0.1%
Top 10%
Top 0.1%
Green