Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/7d710...
Article . 2024
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep transfer learning with improved crayfish optimization algorithm for oral squamous cell carcinoma cancer recognition using histopathological images

Authors: Mahmoud Ragab; Turky Omar Asar;

Deep transfer learning with improved crayfish optimization algorithm for oral squamous cell carcinoma cancer recognition using histopathological images

Abstract

Oral Squamous Cell Carcinoma (OSCC) causes a severe challenge in oncology due to the lack of diagnostic devices, leading to delays in detecting the disorder. The OSCC diagnosis through histopathology demands a pathologist expert because the cellular presentation is variable and highly complex. Existing diagnostic approaches for OSCC have specific efficiency and accuracy restrictions, highlighting the necessity for more reliable techniques. The increase of deep neural networks (DNN) model and their applications in medical imaging have been instrumental in disease diagnosis and detection. Automatic detection systems using deep learning (DL) approaches show tremendous promise in investigating medical imagery with speed, efficiency, and accuracy. In terms of OSCC, this system allows the diagnostic method to be streamlined, facilitating earlier diagnosis and enhancing survival rates. Automatic analysis of histopathological image (HI) can assist in accurately detecting and identifying tumorous tissue, reducing diagnostic turnaround times and increasing the efficacy of pathologists. This study presents a Squeeze-Excitation with Hybrid Deep Learning for Oral Squamous Cell Carcinoma Recognition (SEHDL-OSCCR) on HIs. The presented SEHDL-OSCCR technique mainly focuses on detecting oral cancer (OC) using hybrid DL models. The bilateral filtering (BF) technique is initially used to remove the noise. Next, the SEHDL-OSCCR technique employs the SE-CapsNet model to recognize the feature extractors. An improved crayfish optimization algorithm (ICOA) technique is utilized to improve the performance of the SE-CapsNet model. At last, the classification of the OSCC technique is performed by employing a convolutional neural network with a bidirectional long short-term memory (CNN-BiLSTM) model. The simulation results obtained using the SEHDL-OSCCR technique are investigated using a benchmark medical image dataset. The experimental validation of the SEHDL-OSCCR technique illustrated a greater accuracy outcome of 98.75% compared to recent approaches.

Related Organizations
Keywords

Oral cancer, Science, Q, Squeeze-excitation- CapsNet, R, Article, Deep Learning, Bilateral filtering, Crayfish optimization algorithm, Carcinoma, Squamous Cell, Image Processing, Computer-Assisted, Medicine, Humans, Animals, Mouth Neoplasms, Histopathological image, Neural Networks, Computer, Bidirectional long short-term memory, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities
Cancer Research