Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/a2a19...
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lirias
Article . 2022
License: CC BY
Data sources: Lirias
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Methods for the Measurement of the Apelin Receptor Ligand Apelin

Authors: Janssens, Peter; de Loor, Henriette; Decuypere, Jean-Paul; Vennekens, Rudi; Llorens-Cortes, Catherine; Mekahli, Djalila; Bammens, Bert;

On Methods for the Measurement of the Apelin Receptor Ligand Apelin

Abstract

AbstractApelin exists in many isoforms, both in the circulation and in specific tissues. Apelin peptides have a short half-life but preservation before measurement is scarcely studied. Reproducible mass spectrometry methods to specifically measure a broad range of apelinergic peptide isoforms are currently lacking. A sample protocol to conserve apelinergic peptides in the preanalytical phase and a high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method to measure apelinergic isoforms was developed. Apelin was measured in plasma. For validation, human embryonic kidney (HEK) cells transfected with cDNA for preproapelin were used. Results were compared with a validated radioimmunoassay (RIA) method. Acidifying plasma to pH 2.5 improves post-sampling stability of apelin. HPLC–MS/MS was unable to detect apelin isoforms in plasma of healthy volunteers (n = 16) and chronic kidney disease patients (n = 4). RIA could detect apelin in concentrations between 71 and 263 fmol/l in 10 healthy volunteers. An optimized preanalytical protocol was developed. A sensitive and specific HPLC–MS/MS method failed to detect apelin in human plasma. Apelin-36 was detected in HEK cells transfected with cDNA for preproapelin. Currently, RIA with relatively selective antibodies is the best alternative for the measurement of apelin but novel sensitive and specific methods are needed.

Keywords

DNA, Complementary, Science, INHIBITION, VASOPRESSIN, ELABELA, Ligands, Article, Tandem Mass Spectrometry, Apelin Receptor Ligand Apelin, ISOFORM, Humans, Protein Isoforms, IN-VIVO, Apelin Receptors, Science & Technology, HPLC-MS/MS, Q, R, PEPTIDES, QUANTIFICATION, Multidisciplinary Sciences, Science & Technology - Other Topics, Medicine, Apelin, Intercellular Signaling Peptides and Proteins, Peptides, NEUROPEPTIDE

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
hybrid