Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/44970...
Article . 2022
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A TRIzol-based method for high recovery of plasma sncRNAs approximately 30 to 60 nucleotides

Authors: Kristen P. Rodgers; Alicia Hulbert; Hamza Khan; Maria Shishikura; Shun Ishiyama; Malcolm V. Brock; Yuping Mei;

A TRIzol-based method for high recovery of plasma sncRNAs approximately 30 to 60 nucleotides

Abstract

AbstractProtein functional effector sncRNAs (pfeRNAs) are approximately 30–60 nucleotides (nt), of which the extraction method from plasma has not yet been reported. Silver staining in a high-resolution polyacrylamide gel suggested that the majority of plasma sncRNAs extracted by some broadly used commercial kits were sncRNAs from 100 nt upwards. Additionally, TRIzol’s protocol is for long RNA but not sncRNA recovery. Here, we report a TRIzol-based frozen precipitation method (TFP method), which shows rigor and reproducibility in high yield and quality for plasma sncRNAs approximately 30–60 nt. In contrast to the yields by the commercial kit, plasma sncRNAs extracted by the TFP method enriched more sncRNAs. We used four different pfeRNAs of 34 nt, 45 nt, 53 nt, and 58 nt to represent typical sizes of sncRNAs from 30 to 60 nt and compared their levels in the recovered sncRNAs by the TFP method and by the commercial kit. The TFP method showed lower cycle threshold (CT) values by 2.01–9.17 cycles in 38 plasma samples from 38 patients, including Caucasian, Asian, African American, Latin, Mexican, and those who were a mix of more than one race. In addition, pfeRNAs extracted by two organic-based extraction methods and four commercial kits were undetermined in 22 of 38 samples. Thus, the quick and unbiased TFP method enriches plasma sncRNA ranging from 30 to 60 nt.

Keywords

Nucleotides, Science, Q, R, Reproducibility of Results, Guanidines, Article, Phenols, Medicine, Humans, RNA, Small Untranslated

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
hybrid