
AbstractBy defining a new measure to community structure, exclusive modularity, and based on cavity method of statistical physics, we develop a mathematically principled method to determine the completeness of community structure, which represents whether a partition that is either annotated by experts or given by a community-detection algorithm, carries complete information about community structure in the network. Our results demonstrate that the expert partition is surprisingly incomplete in some networks such as the famous political blogs network, indicating that the relation between meta-data and community structure in real-world networks needs to be re-examined. As a byproduct we find that the exclusive modularity, which introduces a null model based on the degree-corrected stochastic block model, is of independent interest. We discuss its applications as principled ways of detecting hidden structures, finding hierarchical structures without removing edges, and obtaining low-dimensional embedding of networks.
Residence Characteristics, Science, Q, R, Medicine, Humans, Models, Theoretical, Community Networks, Article, Algorithms
Residence Characteristics, Science, Q, R, Medicine, Humans, Models, Theoretical, Community Networks, Article, Algorithms
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
