Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Amsterdam UMC (VU Am...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Protocols
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Nature Protocols
Article . 2023
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genome-wide pooled CRISPR screening in neurospheres

Authors: Tanaz Abid; Amy B. Goodale; Zohra Kalani; Meghan Wyatt; Elizabeth M. Gonzalez; Kevin Ning Zhou; Kenin Qian; +6 Authors

Genome-wide pooled CRISPR screening in neurospheres

Abstract

Spheroid culture systems have allowed in vitro propagation of cells unable to grow in canonical cell culturing conditions, and may capture cellular contexts that model tumor growth better than current model systems. The insights gleaned from genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screening of thousands of cancer cell lines grown in conventional culture conditions illustrate the value of such CRISPR pooled screens. It is clear that similar genome-wide CRISPR screens of three-dimensional spheroid cultures will be important for future biological discovery. Here, we present a protocol for genome-wide CRISPR screening of three-dimensional neurospheres. While many in-depth protocols and discussions have been published for more typical cell lines, few detailed protocols are currently available in the literature for genome-wide screening in spheroidal cell lines. For those who want to screen such cell lines, and particularly neurospheres, we provide a step-by-step description of assay development tests to be performed before screening, as well as for the screen itself. We highlight considerations of variables that make these screens distinct from, or similar to, typical nonspheroid cell lines throughout. Finally, we illustrate typical outcomes of neurosphere genome-wide screens, and how neurosphere screens typically produce slightly more heterogeneous signal distributions than more canonical cancer cell lines. Completion of this entire protocol will take 8-12 weeks from the initial assay development tests to deconvolution of the sequencing data.

Country
Netherlands
Keywords

Genome, Neoplasms, Humans, Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR-Cas Systems, Cell Line

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Related to Research communities
Cancer Research
Upload OA version
Are you the author? Do you have the OA version of this publication?