Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Ultra-cool dwarf stars are abundant, long-lived, and uniquely suited to enable the atmospheric study of transiting terrestrial companions with JWST. Amongst them, the most prominent is the M8.5V star TRAPPIST-1 and its seven planets. While JWST Cycle 1 observations have started to yield preliminary insights into the planets, they have also revealed that their atmospheric exploration requires a better understanding of their host star. Here, we propose a roadmap to characterize the TRAPPIST-1 system -- and others like it -- in an efficient and robust manner. We notably recommend that -- although more challenging to schedule -- multi-transit windows be prioritized to mitigate the effects of stellar activity and gather up to twice more transits per JWST hour spent. We conclude that, for such systems, planets cannot be studied in isolation by small programs, but rather need large-scale, jointly space- and ground-based initiatives to fully exploit the capabilities of JWST for the exploration of terrestrial planets.
Earth and Planetary Astrophysics (astro-ph.EP), [SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP], Space sciences, [SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP], FOS: Physical sciences, Astronomical Sciences, 530, 520, Astrophysics - Solar and Stellar Astrophysics, Particle and high energy physics, Physical Sciences, Astronomical sciences, exoplanet atmosphere space mission JWST, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM), Solar and Stellar Astrophysics (astro-ph.SR), Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), [SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP], Space sciences, [SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP], FOS: Physical sciences, Astronomical Sciences, 530, 520, Astrophysics - Solar and Stellar Astrophysics, Particle and high energy physics, Physical Sciences, Astronomical sciences, exoplanet atmosphere space mission JWST, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM), Solar and Stellar Astrophysics (astro-ph.SR), Astrophysics - Earth and Planetary Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 46 | |
| downloads | 25 |

Views provided by UsageCounts
Downloads provided by UsageCounts