
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>AbstractQuantum correlations are central to the foundations of quantum physics and form the basis of quantum technologies. Here, our goal is to connect quantum correlations and computation: using quantum correlations as a resource for computation—and vice versa, using computation to test quantum correlations. We derive Bell-type inequalities that test the capacity of quantum states for computing Boolean functions within a specific model of computation and experimentally investigate them using 4-photon Greenberger–Horne–Zeilinger (GHZ) states. Furthermore, we show how the resource states can be used to specifically compute Boolean functions—which can be used to test and verify the non-classicality of the underlying quantum states. The connection between quantum correlation and computability shown here has applications in quantum technologies, and is important for networked computing being performed by measurements on distributed multipartite quantum states.
Quantum Physics, Physics, QC1-999, Electronic computers. Computer science, FOS: Physical sciences, QA75.5-76.95, Quantum Physics (quant-ph), 530, 620
Quantum Physics, Physics, QC1-999, Electronic computers. Computer science, FOS: Physical sciences, QA75.5-76.95, Quantum Physics (quant-ph), 530, 620
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
