
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>An algorithm is described and tested that carries out a non negative matrix factorization (NMF) ignoring any stretching of the signal along the axis of the independent variable. This extended NMF model is called StretchedNMF. Variability in a set of signals due to this stretching is then ignored in the decomposition. This can be used, for example, to study sets of powder diffraction data collected at different temperatures where the materials are undergoing thermal expansion. It gives a more meaningful decomposition in this case where the component signals resemble signals from chemical components in the sample. The StretchedNMF model introduces a new variable, the stretching factor, to describe any expansion of the signal. To solve StretchedNMF, we discretize it and employ Block Coordinate Descent framework algorithms. The initial experimental results indicate that StretchedNMF model outperforms the conventional NMF for sets of data with such an expansion. A further enhancement to StretchedNMF for the case of powder diffraction data from crystalline materials called Sparse-StretchedNMF, which makes use of the sparsity of the powder diffraction signals, allows correct extractions even for very small stretches where StretchedNMF struggles. As well as demonstrating the model performance on simulated PXRD patterns and atomic pair distribution functions (PDFs), it also proved successful when applied to real data taken from an in situ chemical reaction experiment.
39 pages, 16 figures
QA76.75-76.765, Condensed Matter - Materials Science, TA401-492, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Computer software, Materials of engineering and construction. Mechanics of materials
QA76.75-76.765, Condensed Matter - Materials Science, TA401-492, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Computer software, Materials of engineering and construction. Mechanics of materials
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=opendoar____::358aee4cc897452c00244351e4d91f69&type=result"></script>');
-->
</script><script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=opendoar____::358aee4cc897452c00244351e4d91f69&type=result"></script>');
-->
</script>| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
