
pmid: 34413295
pmc: PMC8377135
AbstractThe nonlinear Hall effect is an unconventional response, in which a voltage can be driven by two perpendicular currents in the Hall-bar measurement. Unprecedented in the family of the Hall effects, it can survive time-reversal symmetry but is sensitive to the breaking of discrete and crystal symmetries. It is a quantum transport phenomenon that has deep connection with the Berry curvature. However, a full quantum description is still absent. Here we construct a quantum theory of the nonlinear Hall effect by using the diagrammatic technique. Quite different from nonlinear optics, nearly all the diagrams account for the disorder effects, which play decisive role in the electronic transport. After including the disorder contributions in terms of the Feynman diagrams, the total nonlinear Hall conductivity is enhanced but its sign remains unchanged for the 2D tilted Dirac model, compared to the one with only the Berry curvature contribution. We discuss the symmetry of the nonlinear conductivity tensor and predict a pure disorder-induced nonlinear Hall effect for point groups C3, C3h, C3v, D3h, D3 in 2D, and T, Td, C3h, D3h in 3D. This work will be helpful for explorations of the topological physics beyond the linear regime.
Condensed Matter - Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics, Science, Q, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Condensed Matter - Disordered Systems and Neural Networks, Article
Condensed Matter - Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics, Science, Q, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Condensed Matter - Disordered Systems and Neural Networks, Article
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 116 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
